Antimicrobial resistance of Escherichia coli, isolated from children's intestinal microbiota.
L V SuzhaevaSvetlana A EgorovaPublished in: Klinicheskaia laboratornaia diagnostika (2021)
Recent studies have shown that bacterial resistance existed long before antimicrobials were used in medicine, and not only pathogens are resistant to antibiotics. 511 strains of E. coli isolated from the intestinal microbiota of children aged 1 month to 17 years living in St. Petersburg were studied: the susceptibility to 15 antibiotics was determined by the disk diffusion method, as well as the susceptibility to 6 commercial bacteriophages produced by «Microgen» (Russia). The b-lactamase genes of molecular families TEM, SHV, OXA, and CTX-M were detected by multiplex PCR. 39,3% E. coli isolates were resistant to one or more antimicrobial classes. The proportion of multidrug resistant isolates (resistant to 3 or more classes) was 16,6%. Multidrug resistance to clinically significant antimicrobial classes (extended-spectrum cephalosporins (ESC) + fluoroquinolones + aminoglycosides) was detected in 0,8% isolates. Resistance to aminopenicillins was detected in 29,5%, ESC - 11,2%, fluoroquinolones - 13,3%, tetracycline - 20,0%, chloramphenicol - 9,8%, aminoglycosides - 2,5% isolates. b-lactam resistance was due to the beta-lactamase production: to ampicillin - the molecular family TEM (81,9%), ESC - the CTX-M molecular family (87,7%) CTX-M1 - (66%) and CTX-M9 groups (34%). 43,5% multidrug resistant E. coli isolates were susceptible to at least one of the six commercial bacteriophages produced by «Microgen». The study showed that the intestinal microbiota of children is an important reservoir of E. coli resistant (including multidrug resistance) to various classes of antibiotics, and bacteriophage therapy is an alternative method for eradication of antibiotic-resistant E. coli.
Keyphrases
- escherichia coli
- klebsiella pneumoniae
- multidrug resistant
- gram negative
- antimicrobial resistance
- genetic diversity
- acinetobacter baumannii
- drug resistant
- staphylococcus aureus
- genome wide
- mesenchymal stem cells
- dna methylation
- high throughput
- cystic fibrosis
- replacement therapy
- cell therapy
- transcription factor
- real time pcr