Human primosome requires replication protein A when copying DNA with inverted repeats.
Andrey G BaranovskiyLucia M MorstadtNigar D BabayevaTahir H TahirovPublished in: bioRxiv : the preprint server for biology (2024)
The human primosome, a four-subunit complex of primase and DNA polymerase alpha (Polα), initiates DNA synthesis on both chromosome strands by generating chimeric RNA-DNA primers for loading DNA polymerases delta and epsilon (Polε). Replication protein A (RPA) tightly binds to single-stranded DNA strands, protecting them from nucleolytic digestion and unauthorized transactions. We report here that RPA plays a critical role for the human primosome during DNA synthesis across inverted repeats prone to hairpin formation. On other alternatively structured DNA forming a G-quadruplex, RPA provides no assistance for primosome. A stimulatory effect of RPA on DNA synthesis across hairpins was also observed for the catalytic domain of Polα but not of Polε. The important factors for an efficient hairpin bypass by primosome are the high affinity of RPA to DNA based on four DNA-binding domains and the interaction of the winged-helix-turn-helix domain of RPA with Polα. Binding studies indicate that this interaction stabilizes the RPA/Polα complex on the primed template. This work provides insight into a cooperative action of RPA and primosome on DNA, which is critical for DNA synthesis across inverted repeats.