Login / Signup

Ge=B π-Bonding: Synthesis and Reversible [2+2] Cycloaddition of Germaborenes.

Dominik RaiserChristian P SindlingerHartmut SchubertLars Wesemann
Published in: Angewandte Chemie (International ed. in English) (2020)
Phosphine-stabilized germaborenes featuring an unprecedented Ge=B double bond with short B⋅⋅⋅Ge contacts of 1.886(2) (4) and 1.895(3) Å (5) were synthesized starting from an intramolecular germylene-phosphine Lewis pair (1). After oxidative addition of boron trihalides BX3 (X=Cl, Br), the addition products were reduced with magnesium and catalytic amounts of anthracene to give the borylene derivatives in yields of 78 % (4) and 57 % (5). These halide-substituted germaborenes were characterized by single-crystal structure analysis, and the electronic structures were studied by quantum-chemical calculations. According to an NBO NRT analysis, the dominating Lewis structure contains a Ge=B double bond. The germaborenes undergo a reversible, photochemically initiated [2+2] cycloaddition with the phenyl moiety of a terphenyl substituent at room temperature, forming a complex heterocyclic structure with GeIV in a strongly distorted coordination environment.
Keyphrases
  • crystal structure
  • room temperature
  • molecular dynamics
  • high resolution
  • molecular dynamics simulations
  • density functional theory
  • mass spectrometry
  • solar cells