Login / Signup

Salicylic Acid and α-Tocopherol Ameliorate Salinity Impact on Wheat.

Saleha SaeedAbd UllahSami UllahMohamed S ElshikhJavaria NoorSayed M EldinFanjiang ZengFazal AminMohammad Ajmal AliIftikhar Ali
Published in: ACS omega (2023)
Background: Soil salinity negatively impacts agricultural productivity. Consequently, strategies should be developed to inculcate a salinity tolerance in crops for sustainable food production. Growth regulators play a vital role in regulating salinity stress tolerance. Methods: Thus, we examined the effect of exogenous salicylic acid (SA) and alpha-tocopherol (TP) (100 mg/L) on the morphophysio-biochemical responses of two wheat cultivars (Pirsabak-15 and Shankar) to salinity stress (0 and 40 mM). Results: Both Pirsabak-15 and Shankar cultivars were negatively affected by salinity stress. For instance, salinity reduced growth attributes (i.e., leaf fresh and dry weight, leaf moisture content, leaf area ratio, shoot and root dry weight, shoot and root length, as well as root-shoot ratio), pigments (chlorophyll a, chlorophyll a, and carotenoids) but increased hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA), and endogenous TP in both cultivars. Among the antioxidant enzymes, salinity enhanced the activity of peroxidase (POD) and polyphenol oxidase (PPO) in Pirsabak-15; glutathione reductase (GR) and PPO in Shankar, while ascorbate peroxidase (APOX) was present in both cultivars. SA and TP could improve the salinity tolerance by improving growth and photosynthetic pigments and reducing MDA and H 2 O 2 . In general, the exogenous application did not have a positive effect on antioxidant enzymes; however, it increased PPO in Pirsabak-15 and SOD in the Shankar cultivar. Conclusions: Consequently, we suggest that SA and TP could have enhanced the salinity tolerance of our selected wheat cultivars by modulating their physiological mechanisms in a manner that resulted in improved growth. Future molecular studies can contribute to a better understanding of the mechanisms by which SA and TP regulate the selected wheat cultivars underlying salinity tolerance mechanisms.
Keyphrases
  • microbial community
  • hydrogen peroxide
  • physical activity
  • body mass index
  • climate change
  • weight loss
  • body weight
  • anti inflammatory
  • cell death
  • current status