Signatures of optimal control in pairs of schooling zebrafish.
Andress LaanRaul Gil de SagredoGonzalo G de PolaviejaPublished in: Proceedings. Biological sciences (2017)
Animals moving in groups coordinate their motion to remain cohesive. A large amount of data and analysis of movement coordination has been obtained in several species, but we are lacking theoretical frameworks that can derive the form of coordination rules. Here, we examine whether optimal control theory can predict the rules underlying social interactions from first principles. We find that a control rule which is designed to minimize the time it would take a pair of schooling fish to form a cohesively moving unit correctly predicts the characteristics of social interactions in fish. Our methodology explains why social attraction is negatively modulated by self-motion velocity and positively modulated by partner motion velocity, and how the biomechanics of fish swimming can shape the form of social forces. Crucially, the values of all parameters in our model can be estimated from independent experiments that need not relate to measurement of social interactions. We test our theory by showing a good match with experimentally observed social interaction rules in zebrafish. In addition to providing a theoretical rationale for observed decision rules, we suggest that this framework opens new questions about tuning problems and learnability of collective behaviours.