Login / Signup

Rhythmic neuronal activities of the rat nucleus of the solitary tract are impaired by high-fat diet - implications for daily control of satiety.

Lukasz ChrobokJasmin Daniela KlichAnna Magdalena SanetraJagoda Stanislawa Jeczmien-LazurKamil PradelKatarzyna Palus-ChramiecMariusz KępczyńskiHugh David PigginsMarian Henryk Lewandowski
Published in: The Journal of physiology (2021)
Temporal partitioning of daily food intake is crucial for survival and involves the integration of internal circadian states and external influences such as the light-dark cycle and dietary composition. These intrinsic and extrinsic factors are interdependent with misalignment of circadian rhythms promoting body weight gain, while consumption of a calorie-dense diet elevates the risk of obesity and blunts circadian rhythms. Recently, we defined the circadian properties of the dorsal vagal complex of the brainstem, a structure implicated in the control of food intake and autonomic tone, but whether and how 24 h rhythms in this area are influenced by diet remains unresolved. Here we focused on a key structure of this complex, the nucleus of the solitary tract (NTS). We used a combination of immunohistochemical and electrophysiological approaches together with daily monitoring of body weight and food intake to interrogate how the neuronal rhythms of the NTS are affected by a high-fat diet. We report that short-term consumption of a high-fat diet increases food intake during the day and blunts NTS daily rhythms in neuronal discharge. Additionally, we found that a high-fat diet dampens NTS responsiveness to metabolic neuropeptides, and decreases orexin immunoreactive fibres in this structure. These alterations occur without prominent body weight gain, suggesting that a high-fat diet acts initially to reduce activity in the NTS to disinhibit mechanisms that suppress daytime feeding. KEY POINTS: The dorsal vagal complex of the rodent hindbrain possesses intrinsic circadian timekeeping mechanisms In particular, the nucleus of the solitary tract (NTS) is a robust circadian oscillator, independent of the master suprachiasmatic clock Here, we reveal that rat NTS neurons display timed daily rhythms in their neuronal activity and responsiveness to ingestive cues These daily rhythms are blunted or eliminated by a short-term high-fat diet, together with increased consumption of calories during the behaviourally quiescent day Our results help us better understand the circadian control of satiety by the brainstem and its malfunctioning under a high-fat diet.
Keyphrases