Login / Signup

Bioderived 4D Printable Terpene Photopolymers from Limonene and β-Myrcene.

Eric ConstantOlivia KingAndrew C Weems
Published in: Biomacromolecules (2022)
Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and β-myrcene monomers to produce oligomeric photopolymers ( M n < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior. The utility of such photopolymers for biomedical applications is briefly considered on the premise of the hydrophilic nature (measured by contact angle) as well as their cytocompatibility upon seeding films with macrophages. These terpene-derived, green 4D photopolymers are shown to have promising physical behaviors suitable for an array of manufacturing and 3D printing applications.
Keyphrases
  • high resolution
  • ionic liquid
  • physical activity
  • mental health
  • room temperature
  • high throughput
  • working memory
  • liquid chromatography
  • mass spectrometry
  • high density