Pulling simulation predicts mixing free energy for binary mixtures.
Wezi D MkandawireScott T MilnerPublished in: Soft matter (2022)
Predicting the mixing free energy of mixing for binary mixtures using simulations is challenging. We present a novel molecular dynamics (MD) simulation method to extract the chemical potential μ ( X ) for mixtures of species A and B. Each molecule of species A and B is placed in equal and opposite harmonic potentials ±(1/2) U ex ( x ) centered at the middle of the simulation box, resulting in a nonuniform mole fraction profile X ( z ) in which A is concentrated at the center, and B at the periphery. Combining these, we obtain U ex ( X ), the exchange chemical potential required to induce a given deviation of the mole fraction from its average. Simulation results for U ex ( X ) can be fitted to simple free energy models to extract the interaction parameter χ for binary mixtures. To illustrate our method, we investigate benzene-pyridine mixtures, which provide a good example of regular solution behavior, using both TraPPE united-atom and OPLS all-atom potentials, both of which have been validated for pure fluid properties. χ values obtained with the new method are consistent with values from other recent simulation methods. However, the TraPPE-UA results differ substantially from the χ obtained from VLE experimental data, while the OPLS-AA results are in reasonable agreement with experiment, highlighting the importance of accurate potentials in correctly representing mixture behavior.