Topography-Induced Cell Self-Organization from Simple to Complex Aggregates.
Jing LuoJingxin MengZhen GuLuying WangFeilong ZhangShutao WangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2019)
Self-organization is a fundamental and indispensable process in a living system. To understand cell behavior in vivo such as tumorigenesis, 3D cellular aggregates, instead of 2D cellular sheets, have been employed as a vivid in vitro model for self-organization. However, most focus on the macroscale wetting and fusion of cellular aggregates. In this study, it is reported that self-organization of cells from simple to complex aggregates can be induced by multiscale topography through confined templates at the macroscale and cell interactions at the nanoscale. On the one hand, macroscale templates are beneficial for the organization of individual cells into simple and complex cellular aggregates with various shapes. On the other hand, the realization of these macro-organizations also depends on cell interactions at the nanoscale, as demonstrated by the intimate contact between nanoscale pseudopodia stretched by adjacent frontier cells, much like holding hands and by the variation in the intermolecular interactions based on E-cadherin. Therefore, these findings may be very meaningful for clarifying the organizational mechanism of tumor development, tissue engineering and regenerative medicine.