Login / Signup

High-resolution multicontrast tomography with an X-ray microarray anode-structured target source.

Guibin ZanSheraz GulJin ZhangWei ZhaoSylvia LewisDavid J VineYijin LiuPiero PianettaWenbing Yun
Published in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Multicontrast X-ray imaging with high resolution and sensitivity using Talbot-Lau interferometry (TLI) offers unique imaging capabilities that are important to a wide range of applications, including the study of morphological features with different physical properties in biological specimens. The conventional X-ray TLI approach relies on an absorption grating to create an array of micrometer-sized X-ray sources, posing numerous limitations, including technical challenges associated with grating fabrication for high-energy operations. We overcome these limitations by developing a TLI system with a microarray anode-structured target (MAAST) source. The MAAST features an array of precisely controlled microstructured metal inserts embedded in a diamond substrate. Using this TLI system, tomography of a Drum fish tooth with high resolution and tri-contrast (absorption, phase, and scattering) reveals useful complementary structural information that is inaccessible otherwise. The results highlight the exceptional capability of high-resolution multicontrast X-ray tomography empowered by the MAAST-based TLI method in biomedical applications.
Keyphrases