A novel pharmacophore model on PAEs' estrogen and thyroid hormone activities using the TOPSIS and its application in molecule modification.
Zhenzhen HanLuze YangMeijin DuYu LiPublished in: Environmental science and pollution research international (2020)
In the proposed model, the estrogen activity values and thyroid hormone activity values of PAEs molecules were normalized using the TOPSIS method by eliminating the dimension coefficients, and the comprehensive activity values of estrogen and thyroid hormone were obtained by analyzing the activity of each hormone and assigning the corresponding weight. The five pharmacophore models of hormone combined activity were constructed using the comprehensive activity values. Hypol 1 was the optimal pharmacophore model, showing good predictive power and significance. Then, the DBP, DNOP, and DMP molecules in environmental priority control pollutants were selected as the target molecules to perform common substitution reactions of hydrogen bond donor. Eleven PAEs derivative molecules with significantly reduced combined activity and single activity were screened. In analysis of the differences before and after modification of the docking parameters and amino acid residues before and after modification of PAEs and their derivatives, the reduced closeness between ligand and receptor leads to the decrease of thyroid hormones and estrogen activities. Moreover, the establishment of the models, not only shows that the PAEs hormone activity has certain linear relationships with the physical parameters of molecules but also shows that thyroid hormone activity and estrogen activity of PAEs is consistent with the hormone combined activity. The results confirmed the feasibility of the modified PAEs modification scheme with reduced combined activities of hormones, providing an important theoretical method for the construction of the pharmacophore model of combined activities of hormones and the study of PAEs derivative molecules.