Login / Signup

Information recovery from low coverage whole-genome bisulfite sequencing.

Emanuele LibertiniSimon Charles HeathRifat A HamoudiMarta GutMichael J ZillerAgata CzyzVictor RuottiHendrik G StunnenbergMattia FrontiniWillem H OuwehandAlexander MeissnerIvo G GutStephan Beck
Published in: Nature communications (2016)
The cost of whole-genome bisulfite sequencing (WGBS) remains a bottleneck for many studies and it is therefore imperative to extract as much information as possible from a given dataset. This is particularly important because even at the recommend 30X coverage for reference methylomes, up to 50% of high-resolution features such as differentially methylated positions (DMPs) cannot be called with current methods as determined by saturation analysis. To address this limitation, we have developed a tool that dynamically segments WGBS methylomes into blocks of comethylation (COMETs) from which lost information can be recovered in the form of differentially methylated COMETs (DMCs). Using this tool, we demonstrate recovery of ∼30% of the lost DMP information content as DMCs even at very low (5X) coverage. This constitutes twice the amount that can be recovered using an existing method based on differentially methylated regions (DMRs). In addition, we explored the relationship between COMETs and haplotypes in lymphoblastoid cell lines of African and European origin. Using best fit analysis, we show COMETs to be correlated in a population-specific manner, suggesting that this type of dynamic segmentation may be useful for integrated (epi)genome-wide association studies in the future.
Keyphrases
  • high resolution
  • health information
  • affordable care act
  • genome wide association
  • single cell
  • oxidative stress
  • deep learning
  • convolutional neural network
  • anti inflammatory
  • high speed