What do we know about plasmids carried by members of the Acinetobacter genus?
Marco A BrovedanMaría M CameranesiAdriana S LimanskyJorgelina Morán-BarrioPatricia MarchiaroGuillermo Daniel RepizoPublished in: World journal of microbiology & biotechnology (2020)
Several Acinetobacter spp. act as opportunistic pathogens causing healthcare-associated infections worldwide, and in this respect their ability to resist antimicrobial compounds has certainly boosted up their global propagation. Acinetobacter clinical strains have demonstrated a remarkable ability to evolve and become resistant to almost all available drugs in the antimicrobial arsenal, including the last-resort carbapenem β-lactams. The dissemination of antimicrobial resistant genes (ARG), heavy metals-detoxification systems and other traits such as virulence factors is facilitated by mobile genetic elements (MGE) through horizontal gene transfer. Among them, plasmids have been shown to play a critical role in this genus. Despite the continuous increase of Acinetobacter plasmid sequences present in databases, there are no reports describing the basic traits carried by these MGE. To fill this gap, a broad analysis of the Acinetobacter plasmidome was performed. A search for Acinetobacter complete plasmids indicated that 905 sequences have been deposited in the NCBI-GenBank public database, of which 492 are harbored by Acinetobacter baumannii strains. Plasmid-classification schemes based on Rep proteins homology have so far described 23 different groups for A. baumannii (GR1-23), and 16 Acinetobacter Rep3 Groups (AR3G1-16) for the complete genus. Acinetobacter plasmids size ranges from 1.3 to 400 kb. Interestingly, widespread plasmids which are < 20 kb make up 56% of the total present in members of this genus. This led to the proposal of Acinetobacter plasmid assignation to two groups according to their size (< 20 kb and > 20 kb). Usually, smaller plasmids are not self-transmissible, and thereby employ alternative mechanisms of dissemination. For instance, a subgroup of < 20 kb-plasmids belonging to the pRAY-family, lack a rep gene, but encode a relaxase enabling their mobilization by conjugative plasmids. Other subgroup, including small GR2 Acinetobacter plasmids, does not encode a relaxase gene. However, they could still be mobilized by conjugative plasmids which recognize an oriT region carried by these small plasmids. Also, these < 20 kb-plasmids usually carry accessory genes bordered by XerC/D-recombinases recognition sites which have been hypothesized to mediate plasmid plasticity. Conversely, many cases of larger plasmids are self-transmissible and might encode virulence factors and their regulators, thus controlling strain pathogenicity. The ARGs carried by the > 20 kb-plasmids are usually encoded within other MGEs such as transposons, or as part of integrons. It has been recently noted that some of the > 20 kb-plasmids are derived from excised phages, and thus dubbed as phage-like plasmids. All in all, the plethora of plasmids found in strains of this genus and the multiple strategies promoting their evolution and dissemination have certainly contributed to survival of the Acinetobacter members in different habitats, including the clinical environment.
Keyphrases
- escherichia coli
- acinetobacter baumannii
- klebsiella pneumoniae
- multidrug resistant
- drug resistant
- pseudomonas aeruginosa
- biofilm formation
- healthcare
- genome wide
- staphylococcus aureus
- copy number
- risk assessment
- crispr cas
- gram negative
- genome wide identification
- transcription factor
- clinical trial
- heavy metals
- machine learning
- artificial intelligence
- social media
- microbial community
- health risk
- drinking water
- wastewater treatment
- peripheral blood
- electron transfer
- study protocol
- genome wide analysis
- sewage sludge