Login / Signup

Hydrophobic Ionic Liquid Gel-Based Triboelectric Nanogenerator: Next Generation of Ultrastable, Flexible, and Transparent Power Sources for Sustainable Electronics.

Pinlei LvLei ShiChengyu FanYiyang GaoAijun YangXiaohua WangShujiang DingMingzhe Rong
Published in: ACS applied materials & interfaces (2020)
Wearable devices have become a research hotspot due to their prospective applications in wireless sensor networks and the Internet of Things. However, these technologies demand the generation of new power sources, which are efficient, flexible, sustainable, and stable. Triboelectric nanogenerators (TENGs), as a new type of power supply, have been widely studied for environmental energy harvesting and self-powered sensing; however, they have vastly limited stretchability, flexibility, and stability. For the first time, we report a single-electrode TENG based on hydrophobic ionic liquid gel, which is simultaneously transparent (average transmittance of 89% for visible light), stretchable (400%), and has super-stability-up to 3 months in various weather conditions (from -25 to +60 °C and humidity up to 80%). This TENG was used to power a vast range of flexible electronics, including 30 green light-emitting diodes (LEDs), an arch-shaped finger-bending sensor, and a transparent keyboard. This work provides a creative platform to access the next-generation sustainable wearable electronics.
Keyphrases
  • ionic liquid
  • room temperature
  • visible light
  • solid state
  • drinking water
  • heart rate
  • light emitting
  • healthcare
  • risk assessment
  • blood pressure
  • social media
  • climate change
  • hyaluronic acid
  • aortic dissection