Login / Signup

Processing Poly (ethylene terephthalate) Waste into Functional Carbon Materials by Mechanochemical Extrusion.

Jialu XuXiaolan DuanPengfei ZhangQiang NiuSheng Dai
Published in: ChemSusChem (2022)
With the plastic pollution becoming worse, the upcycling of plastic waste into functional materials is a great challenge. Herein, a mechanochemical extrusion approach was developed for processing poly(ethylene terephthalate) (PET) waste into porous carbon materials. The essence of the cyclic extrusion approach lies in the solvent-free mixing of thermoplastic PET with pore-directing additive (e. g., silica or zinc chloride) at the molecular level. PET waste could be upcycled into functional carbon with high surface area (up to 1001 m 2  g -1 ), specific shapes, and preferred mechanical strength, after cyclic extrusion and carbonization. Moreover, metal species could be well dispersed onto porous carbons through solvent-free extrusion, different from traditional loading methods (impregnation method, deposition-precipitation method). In this manner, mechanochemical extrusion provides an alternative for upcycling plastic waste into value-added materials.
Keyphrases