Coastal restoration evaluated using dominant habitat characteristics and associated fish communities.
Kailee SchulzPhilip W StevensJeffrey E HillAlexis A TrotterJared L RitchQuenton M TuckettJoshua T PattersonPublished in: PloS one (2020)
Increasing coastal populations and urban development have led to the loss of estuarine habitats for fish and wildlife. Specifically, a decline in complexity and heterogeneity of tidal marshes and creeks is thought to negatively impact fish communities by altering the function of nursery grounds, including predator refuge and prey resources. To offset these impacts, numerous agencies are restoring degraded habitats while also creating new ones where habitat has been lost. To improve understanding of what contributes to a successful restoration, six quarterly sampling events using two gear types to collect small- and large-bodied fishes were conducted to compare the fish community structure and habitat characteristics at three natural, three restored, and three impacted (i.e. ditched) areas along the coast of Tampa Bay, Florida. Overall, impacted sites had significantly lower small-bodied and juvenile fish diversity than natural and restored areas, while restored sites harbored a greater number of fish species than impacted sites for both large- and small-bodied fish. Habitat features such as shoreline slope differentiated impacted and restored from natural areas. Although we did not find a direct correlation, habitat heterogeneity likely played a role in structuring fish communities. These findings provide guidance for future coastal restoration or modification of existing projects. Specifically, the habitat mosaic approach of creating a geographically compact network of heterogenous habitat characteristics is likely to support fish diversity, while decreasing shoreline slope in a greater amount of area within coastal wetland restorations would more closely mimic natural areas.