Login / Signup

A comparative study of titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates as catalysts for ring-opening polymerization of ε-caprolactone and L-lactide.

Ling-Jo WuRavi Kumar KottalankaYu-Ting ChuZheng-Ian LinChun-Juei ChangShangwu DingHsuan-Ying ChenKuo-Hui WuChih-Kuang Chen
Published in: Dalton transactions (Cambridge, England : 2003) (2024)
Titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates were synthesized, and their catalytic activities in the polymerization of ε-caprolactone and L-lactide were studied. Among five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates, FCl-Ti exhibited the highest level of catalytic activity ([CL] : [FCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 86% at 60 °C after 9 h). For six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates, SCl-Ti exhibited the highest level of catalytic activity ([CL] : [SCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 88% at 60 °C after 118 h). The five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates exhibited a higher level of catalytic activity (6.1-12.8 fold for the polymerization of ε-caprolactone and 6.2-23.0 fold for the polymerization of L-lactide) than the six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates. The density functional theory (DFT) results revealed that the free energy of the first transition state FH-Ti-TS1 is 36.49 kcal mol -1 which is lower than that of SH-Ti-TS1 (46.58 kcal mol -1 ), which was ascribed to the fact that the Ti-N im bond (2.742 Å) of FH-Ti-TS1 is longer than that of SH-Ti-TS1 (2.229 Å) and reduces the repulsion between ligands.
Keyphrases
  • density functional theory
  • molecular dynamics