Login / Signup

Fundamental Properties and Clinical Application of 3D-Printed Bioglass Porcelain Fused to Metal Dental Restoration.

Yangan YunHyeon KangEun-Chae KimSangwon ParkYong-Seok LeeKwi-Dug Yun
Published in: International journal of molecular sciences (2023)
The purpose of this study is to evaluate the mechanical properties and clinical fitness of 3D-printed bioglass porcelain fused to metal (PFM) dental crowns. To evaluate the mechanical properties, tensile strength, Vickers microhardness, shear bond strength, and surface roughness tests of the SLM printed Co-Cr alloy was conducted. A right mandibular 1st molar tooth was prepared for a single dental crown ( n = 10). For a three-unit metal crown and bridge, the right mandibular first premolar and first molar were prepared. Bioglass porcelain was fired to fabricate PFM dental restorations. A clinical gap was observed and measured during each of the four times porcelain was fired. A statistical analysis was conducted. The SLM technique showed the largest statistically significant tensile strength and a 0.2% yield strength value. The milling technique had the lowest statistically significant compressive strength value. The shear bond strength and surface roughness showed no statistically significant difference between the fabricated method. There was a statistically significant change in marginal discrepancy according to the porcelain firing step. The casting technique showed the greatest statistically significant margin discrepancy value. The SLM method showed better fitness than the traditional casting method and showed better mechanical properties as a dental material.
Keyphrases
  • oral health
  • body composition
  • physical activity
  • cone beam computed tomography