Login / Signup

Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti-18Zr-15Nb (at. %) Bar Stock for Spinal Implants.

Konstantin LukashevichVadim SheremetyevAlexander KomissarovVladimir CheverikinVladimir AndreevSergey ProkoshkinVladimir Brailovski
Published in: Journal of functional biomaterials (2022)
In this work, the microstructure, phase state, texture, superelastic and mechanical properties of a Ti-18Zr-15Nb (at. %) shape memory alloy subjected to a combined thermomechanical treatment, including hot rotary forging with either air cooling or water quenching and post-deformation annealing are studied. It was revealed that the main structural component of the deformed and annealed alloy is BCC β -phase. With an increase in the forging temperature from 600 to 700 °C, the average grain size increases from 5.4 to 17.8 µm for the air-cooled specimens and from 3.4 to 14.7 µm for the water-quenched specimens. Annealing at 525 °C after forging at 700 °C with water quenching leads to the formation of a mixed statically and dynamically polygonized substructure of β -phase. In this state, the alloy demonstrates the best combination of functional properties in this study: a Young's modulus of ~33 GPa, an ultimate tensile strength of ~600 MPa and a superelastic recovery strain of ~3.4%.
Keyphrases
  • white matter
  • spinal cord
  • magnetic resonance imaging
  • spinal cord injury
  • magnetic resonance
  • multiple sclerosis
  • solid state