Login / Signup

Analyzing the Effect of Imputation on Classification Performance under MCAR and MAR Missing Mechanisms.

Philip BuczakJian-Jia ChenMarkus Pauly
Published in: Entropy (Basel, Switzerland) (2023)
Many datasets in statistical analyses contain missing values. As omitting observations containing missing entries may lead to information loss or greatly reduce the sample size, imputation is usually preferable. However, imputation can also introduce bias and impact the quality and validity of subsequent analysis. Focusing on binary classification problems, we analyzed how missing value imputation under MCAR as well as MAR missingness with different missing patterns affects the predictive performance of subsequent classification. To this end, we compared imputation methods such as several MICE variants, missForest, Hot Deck as well as mean imputation with regard to the classification performance achieved with commonly used classifiers such as Random Forest, Extreme Gradient Boosting, Support Vector Machine and regularized logistic regression. Our simulation results showed that Random Forest based imputation (i.e., MICE Random Forest and missForest) performed particularly well in most scenarios studied. In addition to these two methods, simple mean imputation also proved to be useful, especially when many features (covariates) contained missing values.
Keyphrases
  • climate change
  • deep learning
  • machine learning
  • mental health
  • metabolic syndrome
  • type diabetes
  • dna methylation
  • rna seq
  • health information
  • adipose tissue
  • neural network
  • solid state