Login / Signup

Enhancing the Stability of the Resin-Dentin Bonding Interface with Ag + - and Zn 2+ -Exchanged Zeolite A.

He LiYunzheng WangShuang WangBinyu WangXiaohe WangZhenrui MiJiale FuZhimin ZhangWenfu Yan
Published in: ACS biomaterials science & engineering (2022)
Enhancing the stability of the resin-dentin bonding interface via simultaneously improving the antibacterial, mechanical, and adhesive properties of a dental adhesive is the key to prolonging the longevity of dental restoration for caries treatment. Herein, we present the stabilization effect of Ag + - and Zn 2+ -exchanged zeolite A (denoted as Ag-A and Zn-A, respectively) on the resin-dentin bonding interface. Ag-A and Zn-A zeolites exhibited sustained ion release capability, outstanding biocompatibility to L929 cells (<2 mg/mL), and excellent antibacterial ability to Streptococcus mutans (minimum inhibitory concentration: 100 μg/mL for Ag-A and 200 μg/mL for Zn-A). One-step self-etching adhesives modified by Ag-A, Zn-A, or Ag-/Zn-A (1/1 in weight) zeolites with an ultralow loading of 0.2 wt % exhibited favorable antibacterial activity with the inhibition of biofilm formation by 70.33, 56.47, and 62.54%, respectively. Compared to the control group, Zn-A- and Ag-/Zn-A-modified adhesives significantly increased the wettability properties of the adhesive and the long-term resin-dentin bond strength (by ∼25%) after 5000 thermocycles of aging. The current data demonstrated that the introduction of 0.2 wt % Zn-A or Ag-/Zn-A into the adhesive remarkably enhanced the stability of the resin-dentin bonding interface. Our findings provide a new strategy to modify the dental adhesive for further optimizing the longevity of dental restorations for caries.
Keyphrases