Login / Signup

Multiplatform-Integrated Identification of Melatonin Targets for a Triad of Psychosocial-Sleep/Circadian-Cardiometabolic Disorders.

Luciana Aparecida CamposOvidiu Constantin BaltatuSergio SenarRym GhimouzEman A AlefishatJosé Cipolla-Neto
Published in: International journal of molecular sciences (2023)
Several psychosocial, sleep/circadian, and cardiometabolic disorders have intricately interconnected pathologies involving melatonin disruption. Therefore, we hypothesize that melatonin could be a therapeutic target for treating potential comorbid diseases associated with this triad of psychosocial-sleep/circadian-cardiometabolic disorders. We investigated melatonin's target prediction and tractability for this triad of disorders. The melatonin's target prediction for the proposed psychosocial-sleep/circadian-cardiometabolic disorder triad was investigated using databases from Europe PMC, ChEMBL, Open Targets Genetics, Phenodigm, and PheWAS. The association scores for melatonin receptors MT1 and MT2 with this disorder triad were explored for evidence of target-disease predictions. The potential of melatonin as a tractable target in managing the disorder triad was investigated using supervised machine learning to identify melatonin activities in cardiovascular, neuronal, and metabolic assays at the cell, tissue, and organism levels in a curated ChEMBL database. Target-disease visualization was done by graphs created using "igraph" library-based scripts and displayed using the Gephi ForceAtlas algorithm. The combined Europe PMC (data type: text mining), ChEMBL (data type: drugs), Open Targets Genetics Portal (data type: genetic associations), PhenoDigm (data type: animal models), and PheWAS (data type: genetic associations) databases yielded types and varying levels of evidence for melatonin-disease triad correlations. Of the investigated databases, 235 association scores of melatonin receptors with the targeted diseases were greater than 0.2; to classify the evidence per disease class: 37% listed psychosocial disorders, 9% sleep/circadian disorders, and 54% cardiometabolic disorders. Using supervised machine learning, 546 cardiovascular, neuronal, or metabolic experimental assays with predicted or measured melatonin activity scores were identified in the ChEMBL curated database. Of 248 registered trials, 144 phase I to IV trials for melatonin or agonists have been completed, of which 33.3% were for psychosocial disorders, 59.7% were for sleep/circadian disorders, and 6.9% were for cardiometabolic disorders. Melatonin's druggability was evidenced by evaluating target prediction and tractability for the triad of psychosocial-sleep/circadian-cardiometabolic disorders. While melatonin research and development in sleep/circadian and psychosocial disorders is more advanced, as evidenced by melatonin association scores, substantial evidence on melatonin discovery in cardiovascular and metabolic disorders supports continued R&D in cardiometabolic disorders, as evidenced by melatonin activity scores. A multiplatform analysis provided an integrative assessment of the target-disease investigations that may justify further translational research.
Keyphrases