Login / Signup

Hybrid approaches based on hydrodynamic cavitation, peroxymonosulfate and UVC irradiation for treatment of organic pollutants: fractal like kinetics, modeling and process optimization.

Elham NooriSetareh ErisFariborz OmidiAnvar Asadi
Published in: Environmental science and pollution research international (2023)
Hydrodynamic cavitation (HC) was emerged as one of the most potential technologies for industrial-scale wastewater or water treatment. In this work, a combined system of HC, peroxymonosulfate (PMS) and UVC irradiation (HC - PMS - UVC) was constructed for effective degradation of carbamazepine. The effect of several experimental parameters and conditions on the carbamazepine degradation was considered. The results show that the degradation and mineralization rates increases with an increase in the inlet pressure from 1.3 to 4.3 bars. The rates of carbamazepine degradation with the combined processes of HC - PMS - UVC, HC - PMS, HC - UVC, and UVC - PMS were 73%, 67%, 40% and 31%, respectively. Under the optimal conditions of reactor, the carbamazepine degradation and mineralization rates were 73% with 59%, respectively. The kinetics of carbamazepine degradation was studied applying a fractal-like approach. So, a new model was proposed by combining first order kinetics model and fractal-like concept. The obtained results show that the proposed fractal-like model gives a better performance compared with traditional first order kinetics model. It has been demonstrated that the HC - PMS - UVC process is a potential treatment method to destroy pharmaceutical pollutants from water and wastewater sources.
Keyphrases
  • wastewater treatment
  • heavy metals
  • radiation therapy
  • risk assessment
  • human health