Postnatal maturation of glutamate clearance and release kinetics at the rat and mouse calyx of Held synapses.
Che Ho YangWon-Kyung HoSuk-Ho LeePublished in: Synapse (New York, N.Y.) (2021)
Although calyx of Held synapses undergo dramatic changes around the hearing onset, previous in vivo studies suggest that the calyx synapses undergo further post-hearing maturation process. While developmental changes over the hearing onset have been extensively studied, this post-hearing maturation process remained relatively little investigated. Because of post-hearing maturation, previous results from studies around hearing onset and studies of post-hearing calyx synapses are somewhat inconsistent. Here, we characterized the post-hearing maturation of calyx synapses with regard to in vitro electrophysiological properties in rats and mice. We found that parameters for residual glutamate in the cleft during a train, EPSC kinetics, and vesicle pool size became close to a full mature level by P14, but they further matured until P16 in the rats. Consistently, the phasic and slow EPSCs evoked by action potential trains at P16 calyx synapses were not different from those at P18 or P25 under physiological extracellular [Ca2+ ]o (1.2 mM). In contrast, the parameters for residual current and EPSC kinetics displayed drastic changes until P16 in mice, and slow EPSCs during the train further decreased between P16 and P18, suggesting that maturation of calyx synapses progresses at least up to P16 in rats and P18 in mice.