Login / Signup

Unlocking the Potential of Nanobubbles: Achieving Exceptional Gas Efficiency in Electrogeneration of Hydrogen Peroxide.

Andre L MagdalenoGabriel A Cerrón-CalleAlexsandro J Dos SantosMarcos R V LanzaOnur G ApulSergi Garcia-Segura
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
The electrogeneration of hydrogen peroxide (H 2 O 2 ) via the oxygen reduction reaction is a crucial process for advanced water treatment technologies. While significant effort is being devoted to developing highly reactive materials, gas provision systems used in these processes are receiving less attention. Here, using oxygen nanobubbles to improve the gas efficiency of the electrogeneration of H 2 O 2 is proposed. Aeration with nanobubbles is compared to aeration with macrobubbles under an identical experimental set-up, with nanobubbles showing a much higher gas-liquid volumetric mass transfer coefficient (K L a) of 2.6 × 10 -2 min -1 compared to 2.7 × 10 -4 min -1 for macrobubbles. Consequently, nanobubbles exhibit a much higher gas efficiency using 60% of O 2 delivered to the system compared to 0.19% for macrobubbles. Further, it is observed that the electrogeneration of H 2 O 2 using carbon felt electrodes is enhanced using nanobubbles. Under the same dissolved oxygen levels, nanobubbles boost the reaction yield to 84%, while macrobubbles yield only 53.8%. To the authors' knowledge, this is the first study to investigate the use of nanobubbles in electrochemical reactions and demonstrate their ability to enhance gas efficiency and electrocatalytic response. These findings have important implications for developing more efficient chemical and electrochemical processes operating under gas-starving systems.
Keyphrases
  • hydrogen peroxide
  • room temperature
  • nitric oxide
  • carbon dioxide
  • ionic liquid
  • gold nanoparticles
  • healthcare
  • mass spectrometry
  • computed tomography
  • human health
  • label free