Login / Signup

Assessment of fibrin-collagen co-gels for generating microvesselsex vivousing endothelial cell-lined microfluidics and multipotent stromal cell (MSC)-induced capillary morphogenesis.

Ross E B FitzsimmonsRonald G IrelandAileen ZhongAgnes SoosCraig A Simmons
Published in: Biomedical materials (Bristol, England) (2020)
One aspect of the challenge of engineering viable tissues ex vivo is the generation of perfusable microvessels of varying diameters. In this work, we take the approach of using hydrogel-based microfluidics seeded with endothelial cells (ECs) to form small artery/vein-like vessels, in conjunction with using the self-assembly behavior of ECs to form capillary-like vessels when co-cultured with multipotent stromal cells (MSCs). In exploring this approach, we focused on investigating collagen, fibrin, and various collagen-fibrin co-gel formulations for their potential suitability as serving as scaffold materials by surveying their angiogencity and mechanical properties. Fibrin and co-gels successfully facilitated multicellular EC sprouting, whereas collagen elicited a migration response of individual ECs, unless supplemented with the PKC (protein kinase C)-activator, phorbol 12-myristate 13-acetate. Collagen scaffolds were also found to severely contract when embedded with mesenchymal cells, but this contraction could be abrogated with the addition of fibrin. Increasing collagen content within co-gel formulations, however, imparted a higher compressive modulus and allowed for the reliable formation of intact hydrogel-based microchannels which could then be perfused. Given the bioactivity and mechanical benefits of fibrin and collagen, respectively, collagen-fibrin co-gels are a promising scaffold option for generating vascularized tissue constructs.
Keyphrases