Login / Signup

Pore-Engineered Hydrogen-Bonded Supramolecular Fluorosensor for Ultrasensitive Determination of Copper Ions.

Haiting ChenHaoquan HuangHuiying XuTong WuYanbin XuXiaomin MaWei YiGuosheng ChenSiming HuangGangfeng Ouyang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
The selective quantification of copper ions (Cu 2+ ) in biosamples holds great importance for disease diagnosis, treatment, and prognosis since the Cu 2+ level is closely associated with the physiological state of the human body. While it remains a long-term challenge due to the extremely low level of free Cu 2+ and the potential interference by the complex matrices. Here, a pore-engineered hydrogen-bonded organic framework (HOF) fluorosensor is constructed enabling the ultrasensitive and highly selective detection of free Cu 2+ . Attributing to atomically precise functionalization of active amino "arm" within the HOF pores and the periodic π-conjugated skeleton, this porous HOF fluorosensor affords high affinity toward Cu 2+ through double copper-nitrogen (Cu─N) coordination interactions, resulting in specific fluorescence quenching of the HOF as compared with a series of substances ranging from other metal ions, metabolites, amino acids to proteins. Such superior fluorescence quenching effect endows the Cu 2+ quantification by this new HOF sensor with a wide linearity of 50-20 000 nm, a low detection limit of 10 nm, and good recoveries (89.5%-115%) in human serum matrices, outperforming most of the reported approaches. This work highlights the practicability of hydrogen-bonded supramolecular engineering for designing facile and ultrasensitive biosensors for clinical free Cu 2+ determination.
Keyphrases