Login / Signup

Carbon Hybrid Materials-Design, Manufacturing, and Applications.

Anuptha PujariDevika ChauhanMegha ChitranshiRonald HudepohlAshley KubleyVesselin ShanovMark Schulz
Published in: Nanomaterials (Basel, Switzerland) (2023)
Carbon nanotubes (CNTs) have extraordinary properties and are used for applications in various fields of engineering and research. Due to their unique combination of properties, such as good electrical and thermal conductivity and mechanical strength, there is an increasing demand to produce CNTs with enhanced and customized properties. CNTs are produced using different synthesis methods and have extraordinary properties individually at the nanotube scale. However, it is challenging to achieve these properties when CNTs are used to form macroscopic sheets, tapes, and yarns. To further improve the properties of macroscale forms of CNTs, various types of nanoparticles and microfibers can be integrated into the CNT materials. The nanoparticles and microfibers can be chosen to selectively enhance the properties of CNT materials at the macroscopic level. In this paper, we propose a technique to manufacture carbon hybrid materials (CHMs) by combining CNT non-woven fabric (in the form of sheets or tapes) with microfibers to form CNT-CF hybrid materials with new/improved properties. CHMs are formed by integrating or adding nanoparticles, microparticles, or fibers into the CNT sheet. The additive materials can be incorporated into the synthesis process from the inlet or the outlet of the reactor system. This paper focuses on CHMs produced using the gas phase pyrolysis method with microparticles/fibers integrated at the outlet of the reactor and continuous microfiber tapes integrated into the CNT sheet at the outlet using a tape feeding machine. After synthesis, characterizations such as microscopy and thermogravimetric analysis were used to study the morphology and composition of the CNTs, and examples for potential applications are discussed in this paper.
Keyphrases
  • cystic fibrosis
  • high resolution
  • machine learning
  • risk assessment
  • wastewater treatment
  • deep learning
  • single molecule
  • high throughput
  • single cell