For visible range emitting particles, which are relevant for display and additional applications, Cd-chalcogenide nanocrystals have reached the highest degree of control and performance. Considering potential toxicity and regulatory limitations, there is a challenge to successfully develop Cd-free emitting nanocrystals and, in particular, heterostructures with desirable properties. Herein, we report a colloidal synthesis of fluorescent heavy-metal-free Zn-chalcogenide semiconductor nanodumbbells (NDBs), in which ZnSe tips were selectively grown on the apexes of ZnTe rods, as evidenced by a variety of methods. The fluorescence of the NDBs can be tuned between ∼500 and 585 nm by changing the ZnSe tip size. The emission quantum yield can be greatly increased through chloride surface treatment and reaches more than 30%. Simulations within an effective-mass-based model show that the hole wave function is spread over the ZnTe nanorods, while the electron wave function is localized on the ZnSe tips. Quantitative agreement for the red-shifted emission wavelength is obtained between the simulations and the experiments. Additionally, the changes in radiative lifetimes correlate well with the calculated decrease in electron-hole overlap upon growth of larger ZnSe tips. The heavy-metal-free ZnTe/ZnSe NDBs may be relevant for optoelectronic applications such as displays or light-emitting diodes.