Profiling Cellular Morphological Changes Induced by Dual-Targeting PROTACs of Aurora Kinase and RNA-Binding Protein YTHDF2.
Georg L GoebelNicole GianninoPhilipp LampeXiaqiu QiuJeffrey L SchloßhauerJochen ImigSonja SieversPeng WuPublished in: Chembiochem : a European journal of chemical biology (2024)
Proteolysis targeting chimeras (PROTACs) are new chemical modalities that degrade proteins of interest, including established kinase targets and emerging RNA-binding proteins (RBPs). Whereas diverse sets of biochemical, biophysical and cellular assays are available for the evaluation and optimizations of PROTACs in understanding the involved ubiquitin-proteasome-mediated degradation mechanism and the structure-degradation relationship, a phenotypic method profiling the cellular morphological changes is rarely used. In this study, first, we reported the only examples of PROTACs degrading the mRNA-binding protein YTHDF2 via screening of multikinase PROTACs. Second, we reported the profiling of cellular morphological changes of the dual kinase- and RBP-targeting PROTACs using the unbiased cell painting assay (CPA). The CPA analysis revealed the high biosimilarity with the established aurora kinase cluster and annotated aurora kinase inhibitors, which reflected the association between YTHDF2 and the aurora kinase signaling network. Broadly, the results demonstrated that the cell painting assay can be a straightforward and powerful approach to evaluate PROTACs. Complementary to the existing biochemical, biophysical and cellular assays, CPA provided a new perspective in characterizing PROTACs at the cellular morphology.