Login / Signup

Multiple configurations of the plastid and mitochondrial genomes of Caragana spinosa.

Qingqing ZhouYang NiJingling LiLinfang HuangHusheng LiHaimei ChenChang Liu
Published in: Planta (2023)
In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes. Caragana spinosa belongs to the Papilionoidea subfamily and has significant pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled and analyzed the plastome and mitogenome of C. spinosa using the Illumina and Nanopore DNA sequencing data. The plastome of C. spinosa was 129,995 bp belonging to the inverted repeat lacking clade (IRLC), which contained 77 protein-coding genes, 29 tRNA genes, and four rRNA genes. The mitogenome was 378,373 bp long and encoded 54 unique genes, including 33 protein-coding, three ribosomal RNA (rRNA), and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, alternative conformations mediated by one and four repetitive sequences in the plastome and mitogenome were identified and validated, respectively. The inverted repeat (PDR12, the 12th dispersed repeat sequence in C. spinosa plastome) of plastome mediating recombinant was conserved in the genus Caragana. Furthermore, we identified 14 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. A phylogenetic analysis of protein-coding genes extracted from the plastid and mitochondrial genomes revealed congruent topologies. Analyses of sequence divergence found one intergenic region, trnN-GUU-ycf1, exhibiting a high degree of variation, which can be used to develop novel molecular markers to distinguish the nine Caragana species accurately. This plastome and mitogenome of C. spinosa could provide critical information for the molecular breeding of C. spinosa and be used as a reference genome for other species of Caragana. In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes.
Keyphrases