Micromechanical Indentation Platform for Rapid Analysis of Viscoelastic Biomolecular Hydrogels.
Phillip LemkeSvenja MoenchPaula S JägerClaude OelschlaegerKersten S RabeCarmen M DomínguezChristof M NiemeyerPublished in: Small methods (2024)
The advent of biomedical applications of soft bioinspired materials has entailed an increasing demand for streamlined and expedient characterization methods meant for both research and quality control objectives. Here, a novel measurement system for the characterization of biological hydrogels with volumes as low as 75 µL was developed. The system is based on an indentation platform equipped with micrometer drive actuators that allow the determination of both the fracture points and Young's moduli of relatively stiff polymers, including agarose, as well as the measurements of viscosity for exceptionally soft and viscous hydrogels, such as DNA hydrogels. The sensitivity of the method allows differentiation between DNA hydrogels produced by rolling circle amplification based on different template sequences and synthesis protocols. In addition, the polymerization kinetics of the hydrogels can be determined by time-resolved measurements, and the apparent viscosities of even more complex DNA-based nanocomposites can be measured. The platform presented here thus offers the possibility to characterize a broad variety of soft biomaterials in a targeted, fast, and cost-effective manner, holding promises for applications in fundamental materials science and ensuring reproducibility in the handling of complex materials.
Keyphrases
- drug delivery
- hyaluronic acid
- tissue engineering
- drug release
- extracellular matrix
- wound healing
- circulating tumor
- quality control
- cell free
- high throughput
- nucleic acid
- single molecule
- cancer therapy
- atomic force microscopy
- magnetic resonance imaging
- computed tomography
- high resolution
- gold nanoparticles
- quantum dots
- mass spectrometry
- aqueous solution
- bone regeneration