Login / Signup

Effect of terahertz waves on the aggregation behavior of neurotransmitters.

Meng-Qiu LiChen ChenYu-Qiang MaHong-Ming Ding
Published in: Physical chemistry chemical physics : PCCP (2024)
Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.
Keyphrases
  • molecular dynamics
  • density functional theory
  • quantum dots
  • single molecule