Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018.
Kyle R AndersonIngrid A JohansonMatthew R PatrickMengyang GuPaul SegallMichael P PolandEmily K Montgomery-BrownAsta MikliusPublished in: Science (New York, N.Y.) (2020)
Caldera-forming eruptions are among Earth's most hazardous natural phenomena, yet the architecture of subcaldera magma reservoirs and the conditions that trigger collapse are poorly understood. Observations from the formation of a 0.8-cubic kilometer basaltic caldera at Kīlauea Volcano in 2018 included the draining of an active lava lake, which provided a window into pressure decrease in the reservoir. We show that failure began after <4% of magma was withdrawn from a shallow reservoir beneath the volcano's summit, reducing its internal pressure by ~17 megapascals. Several cubic kilometers of magma were stored in the reservoir, and only a fraction was withdrawn before the end of the eruption. Thus, caldera formation may begin after withdrawal of only small amounts of magma and may end before source reservoirs are completely evacuated.
Keyphrases