Login / Signup

In Vivo Environment-Adaptive Nanocomplex with Tumor Cell-Specific Cytotoxicity Enhances T Cells Infiltration and Improves Cancer Therapy.

Yiran LiuTianqun LangZhong ZhengHui ChengXin HuangGuanru WangQi YinHaijun Yu
Published in: Small (Weinheim an der Bergstrasse, Germany) (2019)
Drug delivery strategies possessing selectivity for cancer cells are eagerly needed in therapy of metastatic breast cancer. In this study, the chemotherapeutic agent, docetaxel (DTX), is conjugated onto heparan sulfate (HS). Aspirin (ASP), which has the activity of anti-metastasis and enhancing T cells infiltration in tumors, is encapsulated into the HS-DTX micelle. Then the cationic polyethyleneimine (PEI)-polyethylene glycol (PEG) copolymer binds to HS via electrostatic force, forming the ASP-loaded HS-DTX micelle (AHD)/PEI-PEG nanocomplex (PAHD). PAHD displays long circulation behavior in blood due to the PEG shell. Under the tumor microenvironment with weakly acidic pH, PEI-PEG separates from AHD, and the free cationic PEI-PEG facilitates the cellular uptake of AHD by increasing permeability of cell membranes. Then the overexpressed heparanase degrades HS, releasing ASP and DTX. PAHD shows specific toxicity toward tumor cells but not normal cells, with advanced activity of inhibiting tumor growth and lung metastasis in 4T1 tumor-bearing mice. The number of CD8+ T cells in tumor tissues is also increased. Therefore, PAHD can become an efficient drug delivery system for breast cancer treatment.
Keyphrases