Login / Signup

Reappraisal of the Optimal Dose of Meropenem in Critically Ill Infants and Children: a Developmental Pharmacokinetic-Pharmacodynamic Analysis.

Ze-Ming WangXiao-Yu ChenJing BiMei-Ying WangBao-Ping XuBo-Hao TangCen LiWei ZhaoA-Dong Shen
Published in: Antimicrobial agents and chemotherapy (2020)
Data of developmental pharmacokinetics (PK) of meropenem in critically ill infants and children with severe infections are limited. We assessed the population PK and defined the appropriate regimen to optimize treatment in this population based on developmental PK-pharmacodynamic (PD) analysis. Blood samples were collected from pediatric intensive care unit patients with severe infection treated with standard dosage regimens for meropenem. Population PK data were analyzed using NONMEM software. Fifty-seven patients (mean age, 2.96 years [range, 0.101 to 14.4]; mean body weight, 15.8 kg [range, 5.0 to 65.0]) were included. A total of 135 meropenem concentrations were obtainable for population PK modeling. The median number of samples per patients was 2 (range, 1 to 4). A two-compartment model with first-order elimination was optimal for PK modeling. Weight and creatinine clearance (estimated by the Schwartz formula) were significantly correlated with the PK parameters of meropenem. The probabilities of target attainment for pathogens with low MICs of 1 and 2 μg/ml were 87.5% and 68.6% following administration of 40 mg/kg/dose (every 8 h [q8h]) as a 4-h infusion and 98.0% and 73.3% with high MICs of 4 and 8 μg/ml following administration of 110 mg/kg/day as a continuous infusion in critically ill infants and children under 70% fT >MIC (the free time during which the plasma concentration of meropenem exceeds the MIC), respectively. The standard dosage regimens for meropenem did not meet an appropriate PD target, and an optimal dosing regimen was established in critically ill infants and children. (This study has been registered at ClinicalTrials.gov under identifier NCT03643497.).
Keyphrases