Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space.
Atul Munish ChanderNitin Kumar SinghKasthuri VenkateswaranPublished in: Journal of the Indian Institute of Science (2023)
Microbes are important decomposers of organic waste. By decomposing organic waste and using it for their growth, microbes play an important role in maintaining ecosystem's carbon and nitrogen cycles. An ecosystem's microbial shift may disturb it's carbon/nitrogen cycle as a result of any climate change or humanitarian factors, but heat produced by various instruments and greenhouse gases contribute significantly to global warming which in turn may be related to microbial shift of ecosystems. To reduce greenhouse gas emissions and global warming, innovative clean energy production methods must be employed to develop fuels with minimal greenhouse effect. Biofuels, such as bioethanol, provide clean energy with less carbon dioxide emissions. For the production of bioethanol, it is always recommended to use microbes that are capable of decomposing complex organic matter (cellulose, lignin, hemicellulose). Some microbes can efficiently decompose complex organic matter due to the presence of genetic machinery that produces cellulases and β-glucosidase. The membrane transporters are also important for microbes in uptake of simple sugars for metabolism and ethanol production. Microbial technologies are addressing the future needs for not only organic waste management but also clean energy/bioethanol production. However, the role of these technologies on space missions and extraterrestrial settings needs to be explored to improve long term space missions.