Habitat fragmentation reduces survival and drives source-sink dynamics for a large carnivore.
Anna C NisiJohn F BensonRichard KingChristopher C WilmersPublished in: Ecological applications : a publication of the Ecological Society of America (2023)
Rigorous understanding of how environmental conditions impact population dynamics is essential for species conservation, especially in mixed-use landscapes where source-sink dynamics may be at play. Conservation of large carnivore populations in fragmented, human-dominated landscapes is critical for their long-term persistence. However, living in human-dominated landscapes comes with myriad costs, including direct anthropogenic mortality and sublethal energetic costs. How these costs impact individual fitness and population dynamics are not fully understood, partly due to the difficulty in collecting long-term demographic data for these species. Here, we analyzed an 11-year dataset on puma (Puma concolor) space use, mortality, and reproduction in the Santa Cruz Mountains, CA, USA, to quantify how living in a fragmented landscape impacts individual survival and population dynamics. Long-term exposure to housing density drove mortality risk for female pumas, resulting in an 18-percentage-point reduction in annual survival for females in exurban versus remote areas. While the overall population growth rate appeared stable, reduced female survival in more developed areas resulted in source-sink dynamics across the study area, with 42.1% of the Santa Cruz Mountains exhibiting estimated population growth rates <ā1. Since habitat selection is often used as a proxy for habitat quality, we also assessed whether puma habitat selection predicted source and sink areas. Patterns of daytime puma habitat selection predicted source areas, while time-of-day-independent habitat selection performed less well as a proxy. These results illuminate the individual- and population-level consequences of habitat fragmentation for large carnivores, illustrating that habitat fragmentation can produce source-sink dynamics that may not be apparent from other metrics of habitat quality. Locally, conserving high-quality source habitat within the Santa Cruz Mountains is necessary to support long-term puma population persistence. More broadly, source-sink dynamics may at play for other carnivore populations in similar fragmented systems, and linking landscape conditions to population dynamics is essential for effective conservation. Caution should be used in inferring habitat quality from habitat selection alone, but these results shed light on metrics of selection that may be better or worse proxies to identify source areas for large carnivores. This article is protected by copyright. All rights reserved.