Login / Signup

The chameleon-like nature of elusive cobalt-oxygen intermediates in C-H bond activation reactions.

Anran ZhouXuanyu CaoHuanhuan ChenDongru SunYufen ZhaoWonwoo NamYong Wang
Published in: Dalton transactions (Cambridge, England : 2003) (2022)
High-valence metal-oxo (M-O, M = Fe, Mn, etc .) species are well-known reaction intermediates that are responsible for a wide range of pivotal oxygenation reactions and water oxidation reactions in metalloenzymes. Although extensive efforts have been devoted to synthesizing and identifying such complexes in biomimetic studies, the structure-function relationship and related reaction mechanisms of these reaction intermediates remain elusive, especially for the cobalt-oxygen species. In the present manuscript, the calculated results demonstrate that the tetraamido macrocycle ligated cobalt complex, Co(O)(TAML) (1), behaves like a chameleon: the electronic structure varies from a cobalt(III)-oxyl species to a cobalt(IV)-oxo species when a Lewis acid Sc 3+ salt coordinates or an acidic hydrocarbon attacks 1. The dichotomous correlation between the reaction rates of C-H bond activation by 1 and the bond dissociation energy (BDE) vs. the acidity (p K a ) was rationalized for the first time by different reaction mechanisms: for normal C-H bond activation, the Co(III)-oxyl species directly activates the C-H bond via a hydrogen atom transfer (HAT) mechanism, whereas for acidic C-H bond activation, the Co(III)-oxyl species evolves to a Co(IV)-oxo species to increase the basicity of the oxygen to activate the acidic C-H bond, via a novel PCET(PT) mechanism (proton-coupled electron transfer with a PT(proton-transfer)-like transition state). These theoretical findings will enrich the knowledge of biomimetic metal-oxygen chemistry.
Keyphrases
  • electron transfer
  • reduced graphene oxide
  • metal organic framework
  • genetic diversity
  • healthcare
  • ionic liquid
  • gold nanoparticles