Login / Signup

Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy.

Hua YanJiangtao DongXuan HuangXuezhong Du
Published in: ACS applied materials & interfaces (2021)
Two novel stimuli-responsive drug delivery systems (DDSs) were successfully created from bovine serum albumin- or myoglobin-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles (UCNP@mSiO2) via diselenide (Se-Se)-containing linkages. More importantly, multiple roles of each scaffold of the nanovehicles were achieved. The controlled release of the encapsulated drug doxorubicin (DOX) within the mesopores was activated by triple stimuli (acidic pH, glutathione, or H2O2) of tumor microenvironments, owing to the conformation/surface charge changes in proteins or the reductive/oxidative cleavages of the Se-Se bonds. Upon release of DOX, the Förster resonance energy transfer between the UCNP cores and encapsulated DOX was eliminated, resulting in an increase in ratiometric upconversion luminescence for DOX release tracking in real time. The two protein-gated DDSs showed some differences in the drug release performances, relevant to structures and properties of the protein nanogates. The introduction of the Se-Se linkages not only increased the versatility of reductive/oxidative cleavages but also showed less cytotoxicity to all cell lines. The DOX-loaded protein-gated nanovehicles showed the inhibitory effect on tumor growth in tumor-bearing mice and negligible damage/toxicity to the normal tissues. The constructed nanovehicles in a spatiotemporally controlled manner have fascinating prospects in targeted drug delivery for cancer chemotherapy.
Keyphrases