Login / Signup

Ganglia in the Human Fetal Lung.

Kwang Ho ChoJi Hyun KimZhe Wu JinHiroshi AbeGen MurakamiJosé Francisco Rodríguez-Vázquez
Published in: Anatomical record (Hoboken, N.J. : 2007) (2019)
Although pulmonary ganglia were considered to be an analogue of the myenteric ganglia of intestines in embryos, there seemed to be no morphological evaluation in the later stage of development. We conducted immunostainings of intrapulmonary nerves using 17 human fetuses at 14-18 and 28-34 weeks. The ganglion cells were small (15-20 μm in diameter) in the earlier group, but they increased in size (20-30 μm) in the late group. One ganglion, containing 5-30 cell bodies, was usually located "outside" of the bronchial smooth muscle or cartilage. In addition, a few ganglion was found beneath the mucosa of the trachea and principal bronchi. The highest density of ganglia (5-15 ganglia per section with 50 μm interval) was found at the origin of the subsegmental bronchi, but ganglia were absent along more peripheral bronchi those are responsible for contraction and obstruction of the airway. Therefore, in topographical relation between smooth muscle and nerve, intrapulmonary intrinsic neurons were different from intestinal myenteric neurons. Consequently, a previous hypothesis of "embryonic intramuscular bronchial ganglia" seemed not to be based on observations of the peripheral bronchus but on the central bronchus than the sub-subsegmental level. An extrinsic migration and redistribution of ganglia might occur at midterm to provide the final location outside of airway smooth muscles. Finally, no ganglion cell bodies were positive either for neuronal nitric oxide synthase or tyrosine hydroxylase. Instead of the classical entity of autonomic nerves, nonadrenergic noncholinergic (NANC) innervation might be dominant even in fetuses. Anat Rec, 302:2233-2244, 2019. © 2019 American Association for Anatomy.
Keyphrases
  • smooth muscle
  • endothelial cells
  • neuropathic pain
  • optic nerve
  • nitric oxide synthase
  • single cell
  • spinal cord
  • cell therapy
  • gestational age
  • cell proliferation
  • spinal cord injury
  • brain injury
  • peripheral nerve