Login / Signup

Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy.

Hao JiKe XuXiameng DongSun DaLibo Jin
Published in: Journal of fungi (Basel, Switzerland) (2021)
Improving the comprehensive utilization of sugars in lignocellulosic biomass is a major challenge for enhancing the economic viability of lignocellulose biorefinement. A robust yeast Pichia kudriavzevii N-X showed excellent performance in ethanol production under high temperature and low pH conditions and was engineered for ᴅ-xylonate production without xylitol generation. The recombinant strain P. kudriavzevii N-X/S1 was employed for sequential production of ᴅ-xylonate and ethanol from ᴅ-xylose, feeding on ᴅ-glucose without pH control in a two-stage strategy of aerobic and shifting micro-aerobic fermentation. Acid-pretreated corncob without detoxification and filtration was used for ᴅ-xylonate production, then simultaneous saccharification and ethanol fermentation was performed with cellulase added at pH 4.0 and at 40 °C. By this strategy, 33.5 g/L ᴅ-xylonate and 20.8 g/L ethanol were produced at yields of 1.10 g/g ᴅ-xylose and 84.3% of theoretical value, respectively. We propose a promising approach for the sequential production of ᴅ-xylonate and ethanol from non-detoxified corncob using a single microorganism.
Keyphrases
  • saccharomyces cerevisiae
  • high temperature
  • high intensity
  • blood pressure
  • cell free
  • blood glucose
  • recombinant human