Login / Signup

Shearing overbite and asymmetrical jaw motions facilitate food breakdown in a freshwater stingray, Potamotrygon motoro.

Jeffrey D Laurence-ChasenJason B RamsayElizabeth L Brainerd
Published in: The Journal of experimental biology (2019)
Many species of fish process their prey with cyclic jaw motions that grossly resemble those seen in mammalian mastication, despite starkly different tooth and jaw morphologies. The degree of similarity between the processing behaviors of these disparate taxa has implications for our understanding of convergence in vertebrate feeding systems. Here, we used XROMM (X-ray reconstruction of moving morphology) to investigate prey processing behavior of Potamotrygon motoro, the ocellate river stingray, which has recently been found to employ asymmetrical, shearing jaw motions to break down its prey. We found that P. motoro modulates its feeding kinematics to produce two distinct types of chew cycles: compressive cycles and overbite cycles. The latter are characterized by over-rotation of the upper jaw relative to the lower jaw, past the expected occlusal limit, and higher levels of bilateral asymmetry as compared with compressive chews. We did not find evidence of the mediolateral shearing motions typical of mammalian mastication, but overbite cycles appear to shear the prey item between the upper and lower toothplates in a propalinal fashion. Additionally, comparison of hyomandibular and jaw motions demonstrates that the angular cartilages decouple jaw displacement from hyomandibular displacement in rostrocaudal and mediolateral directions. The multiple similarities between mammalian mastication and the dynamic processing behavior of P. motoro support the use of sub-family Potamotrygoninae as a model for studying evolutionary convergence of mastication-like processing.
Keyphrases
  • magnetic resonance imaging
  • genome wide
  • high resolution
  • dna methylation
  • mass spectrometry
  • climate change