Login / Signup

Breast density in dedicated breast computed tomography: Proposal of a classification system and interreader reliability.

Jann WielerNicole BergerThomas FrauenfelderMagda MarconAndreas Boss
Published in: Medicine (2021)
The aim of this study was to develop a new breast density classification system for dedicated breast computed tomography (BCT) based on lesion detectability analogous to the ACR BI-RADS breast density scale for mammography, and to evaluate its interrater reliability.In this retrospective study, 1454 BCT examinations without contrast media were screened for suitability. Excluding datasets without additional ultrasound and exams without any detected lesions resulted in 114 BCT examinations. Based on lesion detectability, an atlas-based BCT density (BCTD) classification system of breast parenchyma was defined using 4 categories. Interrater reliability was examined in 40 BCT datasets between 3 experienced radiologists.Among the included lesions were 63 cysts (55%), 18 fibroadenomas (16%), 7 lesions of fatty necrosis (6%), and 6 breast cancers (5%) with a median diameter of 11 mm. X-ray absorption was identical between lesions and breast tissue; therefore, the lack of fatty septae was identified as the most important criteria for the presence of lesions in glandular tissue. Applying a lesion diameter of 10 mm as desired cut-off for the recommendation of an additional ultrasound, an atlas of 4 BCTD categories was defined resulting in a distribution of 17.5% for density A, 39.5% (B), 31.6% (C), and 11.4% (D) with an intraclass correlation coefficient (ICC) among 3 readers of 0.85 to 0.87.We propose a dedicated atlas-based BCTD classification system, which is calibrated to lesion detectability. The new classification system exhibits a high interrater reliability and may be used for the decision whether additional ultrasound is recommended.
Keyphrases
  • computed tomography
  • magnetic resonance imaging
  • contrast enhanced
  • magnetic resonance
  • machine learning
  • mass spectrometry
  • young adults
  • rna seq
  • ultrasound guided
  • deep learning
  • pet ct