Structural and Functional Analysis of Latex Clearing Protein (Lcp) Provides Insight into the Enzymatic Cleavage of Rubber.
Lorena IlcuWolf RötherJakob BirkeAnton BrausemannOliver EinsleDieter JendrossekPublished in: Scientific reports (2017)
Latex clearing proteins (Lcps) are rubber oxygenases that catalyse the extracellular cleavage of poly (cis-1,4-isoprene) by Gram-positive rubber degrading bacteria. Lcp of Streptomyces sp. K30 (LcpK30) is a b-type cytochrome and acts as an endo-type dioxygenase producing C20 and higher oligo-isoprenoids that differ in the number of isoprene units but have the same terminal functions, CHO-CH2- and -CH2-COCH3. Our analysis of the LcpK30 structure revealed a 3/3 globin fold with additional domains at the N- and C-termini and similarities to globin-coupled sensor proteins. The haem group of LcpK30 is ligated to the polypeptide by a proximal histidine (His198) and by a lysine residue (Lys167) as the distal axial ligand. The comparison of LcpK30 structures in a closed and in an open state as well as spectroscopic and biochemical analysis of wild type and LcpK30 muteins provided insights into the action of the enzyme during catalysis.