Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task.
Pooja ChopraN JunathSitesh Kumar SinghShakir KhanR SugumarMithun BhowmickPublished in: BioMed research international (2022)
An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tackle the problem of uneven staining. However, the resultant detection model is ineffective. By overlapping the images, the DPN uses the addition of small convolution, deconvolution, and attention mechanisms to enhance the model's ability to classify the texture features of pathological images on the BreaKHis dataset. The parameters that are taken into consideration for measuring the accuracy of the proposed model are false-positive rate, false-negative rate, recall, precision, and F 1 score. Several experiments are carried out over the selected parameters, such as making comparisons between benign and malignant classification accuracy under different normalization methods, comparison of accuracy of image level and patient level using different CNN models, correlating the correctness of DPN68-A network with different deep learning models and other classification algorithms at all magnifications. The results thus obtained have proved that the proposed model DPN68-A network can effectively classify the benign and malignant breast cancer pathological images at various magnifications. The proposed model also is able to better assist the pathologists in diagnosing the patients by synthesizing the images of different magnifications in the clinical stage.
Keyphrases
- deep learning
- convolutional neural network
- machine learning
- artificial intelligence
- oxidative stress
- optical coherence tomography
- magnetic resonance imaging
- computed tomography
- newly diagnosed
- working memory
- cell proliferation
- case report
- patient reported outcomes
- health information
- real time pcr
- neural network
- label free