Insertion torque/time integral as a measure of primary implant stability.
Matthias KarlMatthias KarlConstanze SteinerPublished in: Biomedizinische Technik. Biomedical engineering (2020)
The goal of this in vitro study was to determine the insertion torque/time integral for three implant systems. Bone level implants (n = 10; BLT - Straumann Bone Level Tapered 4.1 mm × 12 mm, V3 - MIS V3 3.9 mm × 11.5 mm, ASTRA - Dentsply-Sirona ASTRA TX 4.0 mm × 13 mm) were placed in polyurethane foam material consisting of a trabecular and a cortical layer applying protocols for medium quality bone. Besides measuring maximum insertion torque and primary implant stability using resonance frequency analysis (RFA), torque time curves recorded during insertion were used for calculating insertion torque/time integrals. Statistical analysis was based on ANOVA, Tukey's honest differences test and Pearson product moment correlation (α = 0.05). Significantly greater mean maximum insertion torque (59.9 ± 4.94 Ncm) and mean maximum insertion torque/time integral (961.64 ± 54.07 Ncm∗s) were recorded for BLT implants (p < 0.01). V3 showed significantly higher mean maximum insertion torque as compared to ASTRA (p < 0.01), but significantly lower insertion torque/time integral (p < 0.01). Primary implant stability did not differ significantly among groups. Only a single weak (r = 0.61) but significant correlation could be established between maximum insertion torque and insertion torque/time integral (p < 0.01) when all data from all three implant groups were pooled. Implant design (length, thread pitch) seems to affect insertion torque/time integral more than maximum insertion torque.