Novel developments in computational spectropolarimeter.
En-Lin HsiangShin-Tson WuPublished in: Light, science & applications (2023)
Compared to conventional bulky spectropolarimeters, computational spectropolarimeters which reconstruct light-field information such as polarization and spectrum in a compact form factor, are critical equipment enabling new applications. The key component of a computational spectropolarimeter is a tunable light-field modulator, in which liquid crystal-based device is a promising candidate. By varying the applied voltage, the tunable liquid crystal metasurface can modulate the phase and spectral information of the incident light, and after a few trials, this important information can be decoded mathematically. Such a novel approach paves the foundation for developing compact and low-cost spectropolarimetric imaging devices with widespread applications in biomedical imaging, remote sensing, and optical communications.