Login / Signup

ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning.

Shihu JiaoZheng ChenLichao ZhangXun ZhouLei Shi
Published in: Amino acids (2022)
Autophagy plays an important role in biological evolution and is regulated by many autophagy proteins. Accurate identification of autophagy proteins is crucially important to reveal their biological functions. Due to the expense and labor cost of experimental methods, it is urgent to develop automated, accurate and reliable sequence-based computational tools to enable the identification of novel autophagy proteins among numerous proteins and peptides. For this purpose, a new predictor named ATGPred-FL was proposed for the efficient identification of autophagy proteins. We investigated various sequence-based feature descriptors and adopted the feature learning method to generate corresponding, more informative probability features. Then, a two-step feature selection strategy based on accuracy was utilized to remove irrelevant and redundant features, leading to the most discriminative 14-dimensional feature set. The final predictor was built using a support vector machine classifier, which performed favorably on both the training and testing sets with accuracy values of 94.40% and 90.50%, respectively. ATGPred-FL is the first ATG machine learning predictor based on protein primary sequences. We envision that ATGPred-FL will be an effective and useful tool for autophagy protein identification, and it is available for free at http://lab.malab.cn/~acy/ATGPred-FL , the source code and datasets are accessible at https://github.com/jiaoshihu/ATGPred .
Keyphrases