Login / Signup

Diet crude protein reduction on follicular fluid and cumulus-oocyte complexes of mid-lactating Girolando cows.

Luciano de Rezende CarvalheiraGustavo Bervian Dos SantosJasmin JasminClóvis Ribeiro GuimarãesMariana Magalhães CamposFernanda Samarini MachadoAlexandre Mendonça PedrosoTadeu Eder da SilvaLuiz Altamiro Garcia NogueiraAndré Luís Rios RodriguesBruno Campos de Carvalho
Published in: Animal reproduction (2022)
This study evaluated the effect of crude protein (CP) reduction in four diets (156, 139, 132, and 127 g Kg -1 DM) maintaining constant metabolizable protein (188 g/day) on the follicular fluid and cumulus-oocyte complexes of mid-lactating Girolando cows. Twenty-two Girolando cows with average of 21.55 ±3.19 L daily milk yield, 105.30 ±22.62 days in lactation and 3.22 ±0.03 body condition score were selected. To reduce CP in diets and maintain constant metabolizable protein, urea and soybean meal were gradually replaced by lignosulfonate-treated soybean meal (SoyPass ® , Cargill), resulting in an increase in rumen-undegradable protein and a reduction in rumen degradable protein. A linear and quadratic reduction was observed in the plasma and follicular fluid urea nitrogen concentration following CP reduction, with the most intense reduction occurring in the 127 g Kg -1 DM group (p<0.001). As CP reduced, there was a tendency for a linear increase in the follicular growth rate (P=0.0696), on the number and proportion of viable oocytes (P<0.09), and also a linear increase for the number (P=0.0397) and proportion (P<0.09) of grade I viable oocytes. Plus, there was a linear effect for the number of cumulus oophorus cells. Cows fed with the lowest amount of CP had cumulus-oocyte complexes with higher numbers of cumulus oophorus cells (P=0.0238). Also, the reduction of diet crude protein was followed by a decrease in the probability of oocytes' DNA degradation. In conclusion, the reduction of CP in the diet of mid-lactating Girolando cows, reduces urea nitrogen concentration in both blood plasma and follicular fluid, and, as a consequence, increases the viability of oocytes and the number of cumulus oophorus cells while reducing oocytes' DNA degradation of follicular included cumulus-oocyte complex. The reduction on dietary CP may improve in vivo oocytes' embryo development impacting fertility of lactating dairy cows.
Keyphrases